Pacemaker Leads

Sensing Performing Factors

Factors		Inf	luend	ced	p,	y :

- Sense amplifierIPG
- P and R wave amplitude
 Patient
- Tissue electrode proximity
 Lead design & placement
- Depolarization wave factor
 Lead placement
- Electrode surface area
 Electrode design

Better Sensing with Selox ST/JT

Tissue - Electrode Proximity

Optimal myocardial contact is crucial for signal amplitude detection and slew rate

- Selox has an optimized lead design of tip & tines Benefit: Optimal myocardial contact (atrium and ventricle)
- Short bipole in Selox leads (15 mm)
 Benefit: Assures excellent signal specificity and high slew rates

Geometry of the Tines

Tissue - Electrode Proximity

Selox has 3 tines

Maximum width of each tine is 1.6 mm for Selox

Selox ST/JT

Length 4 mm

Geometry Structure more

shapely

Geometry of the Tines

More Reliable Fixation with Selox

Sensing with Selox ST/JT

Electrode Surface Area

Ideal leads are compromised of small geometric and large electrically active surfaces.

Selox feature fractal coating^{1,2,3} of BIOTRONIK

Benefits:

- Sensing of smallest amplitudes
- Superb signal to noise ratio
- Optimal compatibility to automatic capture control algorithms³

¹ Israel et al., Herzschrittmacher 18(1), 1998

² Bolz et al., Herzschrittmachertherapie und Electrophysiologie 7 (4)

³ Philos DR Active Capture Control, IDE No. G010286 Clinical Report (2002)

Fractal Coating

The "Cauliflower" structure of a fractal coated electrode tip (self repeating structure)

Small geometric size: efficient transfer of energy from tip electrode to heart tissue

Large bio-effective surface area for the clear detection of intrinsic cardiac signals by the pacemaker and elimination of polarization artifacts

Pacemaker Leads

Pacing Performing Factors

Factors

 Myocardial tissue at pacing position

Influenced by:

Patient

• Small electrode size

Lead design

- Acute inflammatory response
- Lead design

• Scar tissue due to enduring inflammatory processes

Lead design

High Pacing Impedance with Selox

Small Electrode Size with fractal coating

• 1.3 mm² electrode tip (Selox)

Benefits:

- High electrical density and low thresholds
- High impedance

Optimal Pacing with Selox

Reduction of acute inflammatory responses via

Selox has a Platinum-Iridium lead tip

Benefit:

Excellent biocompatibility for minimum inflammatory responses

Selox has fractal coating

Benefit:

- Optimal charge transfer between electrode and myocardium
- Long-term stability of pacing threshold

Lower Acute Pacing Thresholds with Selox ST/JT

Reduction of acute inflammatory responses via

Selox leads have 0.75 mg Steroid near the lead tip

Benefit:

- Prevents tissue inflammation
- No post-implant threshold raises

Selox ST/JT – Clinical Evaluation:

Sensing [mV] Atrium

Solov Eamily 2004 MBV 3

Selox ST/JT – Clinical Evaluation:

Sensing [mV] Ventricle

Selox ST/JT – Clinical Evaluation:

Threshold [V] Atrium

Selox ST – Clinical Evaluation:

Threshold [V] Ventricle

